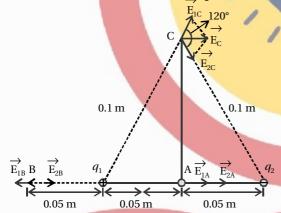
CHAPTER 01

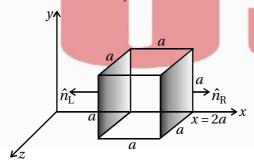
OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY

Section A

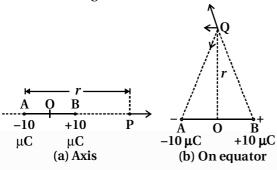
Write the answer of the following questions. [Each carries 1 Mark]


[10]

Date: 18/02/24


- 1. What is the force between two small charged spheres having charges 2×10^{-7} C and 3×10^{-7} C placed 30 cm apart in air ?
- 2. Write four important general properties of electric field lines.
- 3. Express Coulomb's law in the vector form.

- 4. An electron falls through a distance of 1.5 cm in a uniform electric field of magnitude 2×10^4 NC⁻¹. The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance. Compute the time of fall in each case.
- 5. Derive an expression for the electric field due to an infinitely long straight uniformly charged wire.
- 6. For electric dipole,
 - (a) At any point on the axis
 - (b) At any point of the equatorial plane obtain the equations of electric field.
- 7. Two point charges q_1 and q_2 , of magnitude + 10^{-8} C and 10^{-8} C, respectively, are placed 0.1 m apart. Calculate the electric fields at points A, B and C shown in figure.



8. The electric field components in figure are $E_x = \alpha x^{1/2}$, $E_y = E_z = 0$ in which $\alpha = 800$ N/C m^{1/2}. Calculate (a) the flux through the cube and (b) the charge within the cube. Assume that a = 0.1 m. [$\varepsilon_0 = 8.854 \times 10^{-12}$ C²N⁻¹m⁻²]

Two charges \pm 10 μC are placed 5.0 mm apart. Determine the electric field at (a) a point P on the axis of the dipole 15 cm away from its centre O on the side of the positive charge, as shown in figure (a) and (b) a point Q, 15 cm away from O on a line passing through O and normal to the axis of the dipole

as shown in figure (b).

10. If 10^9 electrons move out of a body to another body every second, how much time is required to get a

CHAPTER 01

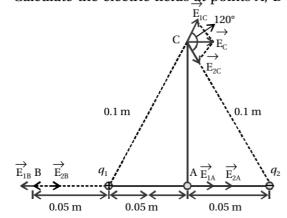
OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY

Date: 18/02/24

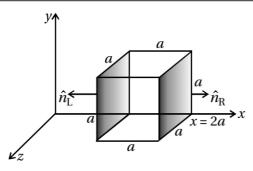
Section [A] : 1 Marks Questions					
No	Ans	Chap	Sec	Que	Universal_Queld
1.	-	Chap 1	S8	1	QP23P11B1211_P1C1S8Q1
2.	-	Chap 1	S8	2	QP23P11B1211_P1C1S8Q2
3.	-	Chap 1	S8	3	QP23P11B1211_P1C1S8Q3
4.	-	Chap 1	S8	4	QP23P11B1211_P1C1S8Q4
5.	-	Chap 1	S8	5	QP23P11B1211_P1C1S8Q5
6.	-	Chap 1	S8	6	QP23P11B1211_P1C1S8Q6
7.	-	Chap 1	S10	21	QP23P11B1211_P1C1S10Q21
8.	-	Chap 1	S9	17	QP23P11B1211_P1C1S9Q17
9.	-	Chap 1	S9	21	QP23P11B1211_P1C1S9Q21
10.	-	Chap 1	S10	15	QP23P11B1211_P1C1S10Q15

CHAPTER 01

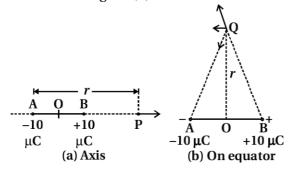
OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY


Section A

• Write the answer of the following questions. [Each carries 1 Mark]


[10]

Date: 18/02/24


- 1. What is the force between two small charged spheres having charges 2×10^{-7} C and 3×10^{-7} C placed 30 cm apart in air ?
- 6 × 10⁻³ N
- 2. Write four important general properties of electric field lines.
- Try Yourself
- 3. Express Coulomb's law in the vector form.
- **™** Try Yourself
- 4. An electron falls through a distance of 1.5 cm in a uniform electric field of magnitude 2×10^4 NC⁻¹. The direction of the field is reversed keeping its magnitude unchanged and a proton falls through the same distance. Compute the time of fall in each case.
- t_e = 2.921 ns, t_p = 0.13 μs
- 5. Derive an expression for the electric field due to an infinitely long straight uniformly charged wire.
- Try Yourself
- 6. For electric dipole,
 - (a) At any point on the axis
 - (b) At any point of the equatorial plane obtain the equations of electric field.
- Try Yourself
- 7. Two point charges q_1 and q_2 , of magnitude + 10^{-8} C and 10^{-8} C, respectively, are placed 0.1 m apart. Calculate the electric fields at points A, B and C shown in figure.

- Try Yourself
- 8. The electric field components in figure are $E_x = \alpha x^{1/2}$, $E_y = E_z = 0$ in which $\alpha = 800$ N/C m^{1/2}. Calculate (a) the flux through the cube and (b) the charge within the cube. Assume that a = 0.1 m. [$\varepsilon_0 = 8.854 \times 10^{-12}$ C²N⁻¹m⁻²]

- Try Yourself
- Two charges \pm 10 μC are placed 5.0 mm apart. Determine the electric field at (a) a point P on the axis of the dipole 15 cm away from its centre O on the side of the positive charge, as shown in figure (a) and (b) a point Q, 15 cm away from O on a line passing through O and normal to the axis of the dipole as shown in figure (b).

- Try Yourself
- 10. If 10^9 electrons move out of a body to another body every second, how much time is required to get a total charge of 1 C on the other body?
- Try Yourself