CHAPTER 02

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 2

Date: 19/02/24

Section A

- Write the answer of the following questions. [Each carries 1 Mark]
- 1. Derive expression for the capacitance of the parallel plate capacitor.
- 2. Obtain the equation of energy stored in capacitor, $W = \frac{Q^2}{2C}$.
- 3. A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process ? ($\Delta U = 4.5 \times 10^{-6} \text{ J} 2.25 \times 10^{-6} \text{ J} = 2.25 \times 10^{-6} \text{ J}$)
- 4. Two charges 3×10^{-8} C and -2×10^{-8} C are located 15 cm apart. At what point on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.
- 5. A slab of material of dielectrical constant K has the same area as the plates of a parallel-plate capacitor but has a thickness $\left(\frac{3}{4}\right)d$, where *d* is the separation of the plates. How is the capacitance changed when the slab is inserted between the plates ?
- 6. Obtain the equation of electric potential energy of a dipole from equation of potential energy of a system of two electric charges.
- 7. Four charges are arranged at the corners of a square ABCD of side *d* as shown in figure.
 - (a) Find the work required to put together this arrangement.
 - (b) A charge q_0 is brought to the centre E of the square the four charges being held fixed at its corners. How much extra work is needed to do this ?

- 8. Derive the formula for the electric potential due to an electric dipole at a point from it.
- 9. Two charges 3×10^{-8} C and -2×10^{-8} C are located 15 cm apart. At what point on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.
- 10. A network of four 10 μ F capacitors is connected to a 500 V supply, as shown in figure. Determine (a) the equivalent capacitance of the network and (b) the charge on each capacitor. (Note, the charge on a capacitor is the charge on the plate with higher potential, equal and opposite to the charge on the plate with lower potential).

[10]

CHAPTER 02

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 2

Date: 19/02/24

Section [A] : 1 Marks Questions							
No	Ans	Chap	Sec	Que	Universal_Queld		
1.	-	Chap 2	S8	1	QP23P11B1211_P1C2S8Q1		
2.	-	Chap 2	S8	2	QP23P11B1211_P1C2S8Q2		
3.	-	Chap 2	S8	3	QP23P11B1211_P1C2S8Q3		
4.	-	Chap 2	S8	4	QP23P11B1211_P1C2S8Q4		
5.	-	Chap 2	S9	18	QP23P11B1211_P1C2S9Q18		
6.	-	Chap 2	S9	17	QP23P11B1211_P1C2S9Q17		
7.	-	Chap 2	S10	21	QP23P11B1211_P1C2S10Q21		
8.	-	Chap 2	S10	20	QP23P11B1211_P1C2S10Q20		
9.	-	Chap 2	S10	17	QP23P11B1211_P1C2S10Q17		
10.	-	Chap 2	S9	20	QP23P11B1211_P1C2S9Q20		

Welcome To Future - Quantum Paper

CHAPTER 02

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 2

Date: 19/02/24

Section A

•	Write the answer of the following questions. [Each carries 1 Mark]	[10]
1.	Derive expression for the capacitance of the parallel plate capacitor.	
	Try Yourself	
2.	Obtain the equation of energy stored in capacitor, $W = \frac{Q^2}{2C}$.	
	Try Yourself	
3.	A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process? ($\Delta U = 4.5 \times 10^{-6} \text{ J} - 2.25 \times 10^{-6} \text{ J} = 2.25 \times 10^{-6} \text{ J}$)	is he
	Try Yourself	
4.	Two charges 3×10^{-8} C and -2×10^{-8} C are located 15 cm apart. At what point on the line joint the two charges is the electric potential zero ? Take the potential at infinity to be zero.	ng
	x = 9 cm or x = 45 cm	
5.	A slab of material of dielectrical constant K has the same area as the plates of a parallel-plate	ate
	capacitor but has a thickness $\left(\frac{3}{4}\right)d$, where <i>d</i> is the separation of the plates. How is the capacitar changed when the slab is inserted between the plates ?	ice
	Try Yourself	
6.	Obtain the equation of electric potential energy of a dipole from equation of potential energy of system of two electric charges.	f a
	Try Yourself	
7.	Four charges are arranged at the corners of a square ABCD of side d as shown in figure. (a) Find the work required to put together this arrangement.	
	 (b) A charge q₀ is brought to the centre E of the square the four charges being held fixed at corners. How much extra work is needed to do this ? +q -q -q	its
	$-q \rightarrow +q$	
	Try Yourself	
8.	Derive the formula for the electric potential due to an electric dipole at a point from it.	
	Try Yourself	

9. Two charges 3×10^{-8} C and -2×10^{-8} C are located 15 cm apart. At what point on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.

- Try Yourself
- 10. A network of four 10 μ F capacitors is connected to a 500 V supply, as shown in figure. Determine (a) the equivalent capacitance of the network and (b) the charge on each capacitor. (Note, the charge on a capacitor is the charge on the plate with higher potential, equal and opposite to the charge on the plate with lower potential).

Try Yourself