CHAPTER05

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 5

Section A

•	Write the answer of the following	questions.	Each carries	1 Mark
•	write the answer of the following	questions.	Lacif carries	1 markj

[10]

- 1. Define magnetisation (M). Write its formula, unit and dimension
- 2. Write four points for electric dipole and magnetic dipole analogy.
- 3. Obtain the relation between magnetisation (\vec{M}) and magnetic intensity (\vec{H}) for a solenoid. Derive formula $\vec{B} = \mu_0 (\vec{H} + \vec{M})$.
- A solenoid has a core of a material with relative permeability 400. The windings of the solenoid are insulated from the core and carry a current of 2A. If the number of turns is 1000 per metre, calculate (a) H, (b) M, (c) B and (d) the magnetising current I_m.
- 5. (a) Explain paramagnetism and paramagnetic substance.
 - (b) Explain ferromagnetism and ferromagnetic substance.
- 6. A closely wound solenoid of 2000 turns and area of cross-section 1.6×10^{-4} m², carrying a current of 4.0 A, is suspended through its centre allowing it to turn in a horizontal plane.
 - (a) What is the magnetic moment associated with the solenoid?
 - (b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of 7.5×10^{-2} T is set up at an angle of 30° with the axis of the solenoid ?
- 7. Give the characteristics of magnetic field lines.
- 8. A bar magnet of magnetic moment 1.5 J T⁻¹ lies aligned with the direction of a uniform magnetic field of 0.22 T.

What is the amount of work required by an external torque to turn the magnet so as to align its magnetic moment: (i) normal to the field direction, (ii) opposite to the field direction ?

- 9. A short bar magnet placed in a horizontal plane has its axis aligned along the magnetic north-south direction. Null points are found on the axis of the magnet at 14 cm from the centre of the magnet. The earth's magnetic field at the place is 0.36 G and the angle of dip is zero. What is the total magnetic field on the normal bisector of the magnet at the same distance as the null-point (i.e., 14 cm) from the centre of the magnet? (At null points, field due to a magnet is equal and opposite to the horizontal component of earth's magnetic field.)
- 10. A short bar magnet of magnetic moment $m = 0.32 \text{ JT}^{-1}$ is placed in a uniform magnetic field of 0.15 T. If the bar is free to rotate in the plane of the field, which orientation would correspond to its :
 - (a) stable, and
 - (b) unstable equilibrium ? What is the potential energy of the magnet in each case ?

CHAPTER05

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 5

Date: 22/02/24

Section [A] : 1 Marks Questions								
No	Ans	Chap	Sec	Que	Universal_Queld			
1.	-	Chap 5	S8	5	QP23P11B1211_P1C5S8Q5			
2.	-	Chap 5	S8	2	QP23P11B1211_P1C5S8Q2			
3.	-	Chap 5	S9	19	QP23P11B1211_P1C5S9Q19			
4.	-	Chap 5	S9	21	QP23P11B1211_P1C5S9Q21			
5.	-	Chap 5	S9	20	QP23P11B1211_P1C5S9Q20			
6.	-	Chap 5	S9	17	QP23P11B1211_P1C5S9Q17			
7.	-	Chap 5	S9	14	QP23P11B1211_P1C5S9Q14			
8.	-	Chap 5	S9	13	QP23P11B1211_P1C5S9Q13			
9.	-	Chap 5	S10	20	QP23P11B1211_P1C5S10Q20			
10.	-	Chap 5	S10	19	QP23P11B1211_P1C5S10Q19			

Welcome To Future - Quantum Paper

CHAPTER05

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 5

Date: 22/02/24

Section A

•	Write the answer of the following questions. [Each carries 1 Mark]	[10]
1.	Define magnetisation (M). Write its formula, unit and dimension	
	Try Yourself	
2.	Write four points for electric dipole and magnetic dipole analogy.	
	Try Yourself	
3.	Obtain the relation between magnetisation (\vec{M}) and magnetic intensity (\vec{H}) for a solenoid. Derived formula $\vec{B} = \mu_0(\vec{H} + \vec{M})$.	ve
	Try Yourself	
4.	A solenoid has a core of a material with relative permeability 400. The windings of the solenoid a insulated from the core and carry a current of 2A. If the number of turns is 1000 per metre, calcula (a) H, (b) M, (c) B and (d) the magnetising current I _m .	te ite
	Try Yourself	
5.	(a) Explain paramagnetism and paramagnetic substance.(b) Explain ferromagnetism and ferromagnetic substance.	
	Try Yourself	
6.	 A closely wound solenoid of 2000 turns and area of cross-section 1.6 × 10⁻⁴ m², carrying a currer of 4.0 A, is suspended through its centre allowing it to turn in a horizontal plane. (a) What is the magnetic moment associated with the solenoid ? (b) What is the force and torque on the solenoid if a uniform horizontal magnetic field of 7.5 × 10⁻² is set up at an angle of 30° with the axis of the solenoid ? 	nt ? T
	Try Yourself	
7.	Give the characteristics of magnetic field lines.	
	Try Yourself	
8.	A bar magnet of magnetic moment 1.5 J T ⁻¹ lies aligned with the direction of a uniform magne field of 0.22 T. What is the amount of work required by an external torque to turn the magnet so as to align its magne moment: (i) normal to the field direction, (ii) opposite to the field direction ?	tic tic
	Try Yourself	
9.	A short bar magnet placed in a horizontal plane has its axis aligned along the magnetic north-sour direction. Null points are found on the axis of the magnet at 14 cm from the centre of the magn The earth's magnetic field at the place is 0.36 G and the angle of dip is zero. What is the to magnetic field on the normal bisector of the magnet at the same distance as the null-point (i. 14 cm) from the centre of the magnet? (At null points, field due to a magnet is equal and oppose to the horizontal component of earth's magnetic field.)	th et. tal e., ite

Try Yourself

- 10. A short bar magnet of magnetic moment $m = 0.32 \text{ JT}^{-1}$ is placed in a uniform magnetic field of 0.15 T. If the bar is free to rotate in the plane of the field, which orientation would correspond to its :
 - (a) stable, and
 - (b) unstable equilibrium ? What is the potential energy of the magnet in each case ?
- Try Yourself