CHAPTER 06

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 6

Section A

• Write the answer of the following questions. [Each carries 1 Mark]

(a) Obtain the expression for the magnetic energy stored in a solenoid in terms of magnetic field
B, area A and length *l* of the solenoid.

- (b) Derive the equation for magnetic energy density.
- 2. Derive $W = \frac{1}{2}LI^2$ as the energy required to build up the current I in the coil having self-inductance L.
- 3. A circular coil of radius 8 cm and 20 turns is rotated about its vertical diameter with an angular speed of 50 rad s⁻¹ in a uniform horizontal magnetic field of magnitude 3×10^{-2} T. Obtain the maximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10 Ω calculate the maximum value of current in the coil.
- 4. Explain motional emf and derive $\varepsilon = Blv$
- 5. There are two coils A and B separated by some distance. If a current of 2 A flows through A, a magnetic flux of 10^{-2} Wb passes through B (no current through B). If no current passes through A and a current of 1 A passes through B, what is the flux through A ?
- 6. State and explain Faraday's law of electromagnetic induction.
- 7. Define unit of self-inductance. On which factors self-inductance depends.
- 8. Two concentric circular coils, one of small radius r_1 and the other of large radius r_2 , such that $r_1 \ll r_2$, are placed co-axially with centres coinciding. Obtain the mutual inductance of the arrangement.
- 9. A square loop of side 10 cm and resistance 0.5 Ω is placed vertically in the east-west plane. A uniform magnetic field of 0.10 T is set up across the plane in the north-east direction. The magnetic field is decreased to zero in 0.70 s at a steady rate. Determine the magnitudes of induced emf and current during this time-interval.
- 10. A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is 1 cm s^{-1} in a direction normal to the (a) longer side, (b) shorter side of the loop ? For how long does the induced voltage last in each case ?

[10]

CHAPTER 06

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 6

Date: 22/02/24

Section [A] : 1 Marks Questions					
No	Ans	Chap	Sec	Que	Universal_Queld
1.	-	Chap 6	S8	3	QP23P11B1211_P1C6S8Q3
2.	-	Chap 6	S8	4	QP23P11B1211_P1C6S8Q4
3.	-	Chap 6	S8	6	QP23P11B1211_P1C6S8Q6
4.	-	Chap 6	S8	7	QP23P11B1211_P1C6S8Q7
5.	-	Chap 6	S9	12	QP23P11B1211_P1C6S9Q12
6.	-	Chap 6	S9	14	QP23P11B1211_P1C6S9Q14
7.	-	Chap 6	S9	16	QP23P11B1211_P1C6S9Q16
8.	-	Chap 6	S9	18	QP23P11B1211_P1C6S9Q18
9.	-	Chap 6	S10	18	QP23P11B1211_P1C6S10Q18
10.	-	Chap 6	S9	21	QP23P11B1211_P1C6S9Q21

CHAPTER 06

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 6

Date: 22/02/24

Section A

- Write the answer of the following questions. [Each carries 1 Mark]
- (a) Obtain the expression for the magnetic energy stored in a solenoid in terms of magnetic field B, area A and length *l* of the solenoid.
 - (b) Derive the equation for magnetic energy density.
- Try Yourself
- 2. Derive $W = \frac{1}{2}LI^2$ as the energy required to build up the current I in the coil having self-inductance L.
- Try Yourself
- 3. A circular coil of radius 8 cm and 20 turns is rotated about its vertical diameter with an angular speed of 50 rad s⁻¹ in a uniform horizontal magnetic field of magnitude 3×10^{-2} T. Obtain the maximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10 Ω calculate the maximum value of current in the coil.
- Try Yourself
- 4. Explain motional emf and derive $\varepsilon = Blv$
- Try Yourself
- 5. There are two coils A and B separated by some distance. If a current of 2 A flows through A, a magnetic flux of 10^{-2} Wb passes through B (no current through B). If no current passes through A and a current of 1 A passes through B, what is the flux through A ?
- Try Yourself
- 6. State and explain Faraday's law of electromagnetic induction.
- Try Yourself
- 7. Define unit of self-inductance. On which factors self-inductance depends.
- Try Yourself
- 8. Two concentric circular coils, one of small radius r_1 and the other of large radius r_2 , such that $r_1 \ll r_2$, are placed co-axially with centres coinciding. Obtain the mutual inductance of the arrangement.
- Try Yourself
- **9.** A square loop of side 10 cm and resistance 0.5 Ω is placed vertically in the east-west plane. A uniform magnetic field of 0.10 T is set up across the plane in the north-east direction. The magnetic field is decreased to zero in 0.70 s at a steady rate. Determine the magnitudes of induced emf and current during this time-interval.
- Try Yourself
- 10. A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is 1 cm s⁻¹ in a direction normal to the (a) longer side, (b) shorter side of the loop ? For how long does the induced voltage last in each case ?
- Try Yourself

[10]