CHAPTER13

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 13

Date: 27/02/24

Section A

• Write the answer of the following questions. [Each carries 1 Mark]

[10]

- 1. How long can an electric lamp of 100 W be kept glowing by fusion of 2 kg of deuterium ? Take the fusion reaction as ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + n + 3.27 \text{ MeV}$
- 2. (a) Suppose, we think of fission of a ${}^{56}_{26}$ Fe nucleus into two equal fragments, ${}^{28}_{13}$ Al. Is the fission energetically possible? Argue by working out Q of the process. Given $m({}^{56}_{26}$ Fe) = 55.93494 u and $m({}^{28}_{13}$ Al) = 27.98191 u
 - (b) The fission properties of $^{239}_{94}$ Pu are very similar to those of $^{235}_{92}$ U. The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure $^{239}_{94}$ Pu undergo fission ?
- 3. How long can an electric lamp of 100 W be kept glowing by fusion of 2.0 kg of deuterium ? Take the fusion reaction as

```
{}^{2}_{1}\text{H} + {}^{2}_{1}\text{H} \rightarrow {}^{3}_{2}\text{He} + n + 3.27 \text{ MeV}
```

- 4. Given the mass of iron nucleus as 55.85 u and A = 56, find the nuclear density.
- 5. Obtain approximately the ratio of the nuclear radii of the gold isotope $^{197}_{79}$ Au and the silver isotope $^{107}_{47}$ Ag.
- 6. Describe the nuclear force and its characteristics.
- 7. Explain the process of thermonuclear fusion as a source of energy in the Sun and stars.
- 8. The Q value of a nuclear reaction $A + b \rightarrow C + d$ is defined by $Q = [m_A + m_b m_C m_d]c^2$ where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.
 - (i) ${}_{1}^{1}H + {}_{1}^{3}H \rightarrow {}_{1}^{2}H + {}_{1}^{2}H$
 - (ii) ${}^{12}_{6}C + {}^{12}_{6}C \rightarrow {}^{20}_{10}Ne + {}^{4}_{2}He$

Atomic masses are given to be :

 $m(_1^2 \text{H}) = 2.014102 \ u$

 $m(_1^3 \text{H}) = 3.016049 u$

```
m({}^{12}_{6}\text{C}) = 12.000000 \ u
```

```
m(^{20}_{10} \text{ Ne}) = 19.992439 u
```

- 9. From the relation $R = R_0 A^{\frac{1}{3}}$, where R_0 is a constant and A is the mass number of a nucleus, show that the nuclear matter density is nearly constant (i.e. independent of A).
- 10. Write and explain the Einstein theory of special relativity.

CHAPTER13

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 13

Date: 27/02/24

Section [A] : 1 Marks Questions					
No	Ans	Chap	Sec	Que	Universal_Queld
1.	-	Chap 13	S8	5	QP23P11B1211_P2C13S8Q5
2.	-	Chap 13	S9	21	QP23P11B1211_P2C13S9Q21
3.	-	Chap 13	S9	18	QP23P11B1211_P2C13S9Q18
4.	-	Chap 13	S9	17	QP23P11B1211_P2C13S9Q17
5.	-	Chap 13	S9	11	QP23P11B1211_P2C13S9Q11
6.	-	Chap 13	S10	20	QP23P11B1211_P2C13S10Q20
7.	-	Chap 13	S10	19	QP23P11B1211_P2C13S10Q19
8.	-	Chap 13	S10	18	QP23P11B1211_P2C13S10Q18
9.	-	Chap 13	S10	11	QP23P11B1211_P2C13S10Q11
10.	-	Chap 13	S10	13	QP23P11B1211_P2C13S10Q13

Welcome To Future - Quantum Paper

CHAPTER13

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 13

Date: 27/02/24

Section A

• Write the answer of the following questions. [Each carries 1 Mark]

[10]

1. How long can an electric lamp of 100 W be kept glowing by fusion of 2 kg of deuterium ? Take the fusion reaction as ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + n + 3.27 \text{ MeV}$

 $t = 4.99 \times 10^4$ year

- 2. (a) Suppose, we think of fission of a ${}^{56}_{26}$ Fe nucleus into two equal fragments, ${}^{28}_{13}$ Al. Is the fission energetically possible? Argue by working out Q of the process. Given $m({}^{56}_{26}$ Fe) = 55.93494 u and $m({}^{28}_{13}$ Al) = 27.98191 u
 - (b) The fission properties of $^{239}_{94}$ Pu are very similar to those of $^{235}_{92}$ U. The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure $^{239}_{94}$ Pu undergo fission ?
- Try Yourself
- 3. How long can an electric lamp of 100 W be kept glowing by fusion of 2.0 kg of deuterium ? Take the fusion reaction as

 $_{1}^{2}\text{H} + _{1}^{2}\text{H} \rightarrow _{2}^{3}\text{He} + n + 3.27 \text{ MeV}$

- Try Yourself
- 4. Given the mass of iron nucleus as 55.85 u and A = 56, find the nuclear density.
- Try Yourself
- 5. Obtain approximately the ratio of the nuclear radii of the gold isotope $^{197}_{79}$ Au and the silver isotope $^{107}_{47}$ Ag.
- Try Yourself
- 6. Describe the nuclear force and its characteristics.
- Try Yourself
- 7. Explain the process of thermonuclear fusion as a source of energy in the Sun and stars.
- Try Yourself
- 8. The Q value of a nuclear reaction $A + b \rightarrow C + d$ is defined by $Q = [m_A + m_b m_C m_d]c^2$ where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

(i) ${}^{1}_{1}H + {}^{3}_{1}H \rightarrow {}^{2}_{1}H + {}^{2}_{1}H$

(ii) ${}^{12}_{6}C + {}^{12}_{6}C \rightarrow {}^{20}_{10}Ne + {}^{4}_{2}He$

Atomic masses are given to be :

 $m(_1^2 \text{H}) = 2.014102 \ u$

 $m(_1^3 H) = 3.016049 u$

 $m({}^{12}_{6}\text{C}) = 12.000000 \ u$

 $m(^{20}_{10} \text{Ne}) = 19.992439 \ u$

Welcome To Future - Quantum Paper

Try Yourself

- 9. From the relation $R = R_0 A^{\frac{1}{3}}$, where R_0 is a constant and A is the mass number of a nucleus, show that the nuclear matter density is nearly constant (i.e. independent of A).
- Try Yourself
- 10. Write and explain the Einstein theory of special relativity.
- Try Yourself